
Investigation of realistic PET simulations incorporating tumor
patient’s specificity using anthropomorphic models: Creation
of an oncology database

Panagiotis Papadimitroulas
Department of Medical Physics, School of Medicine, University of Patras, Rion, GR 265 04, Greece

George Loudos
Department of Biomedical Engineering, Technological Educational Institute of Athens,
Ag. Spyridonos Street, Egaleo GR 122 10, Athens, Greece

Amandine Le Maitre, Mathieu Hatt, and Florent Tixier
Medical Information Processing Laboratory (LaTIM), National Institute of Health and Medical Research
(INSERM), 29609 Brest, France

Nikos Efthimiou and George C. Nikiforidis
Department of Medical Physics, School of Medicine, University of Patras, Rion, GR 265 04, Greece

Dimitris Visvikis
Medical Information Processing Laboratory (LaTIM), National Institute of Health and Medical Research
(INSERM), 29609 Brest, France

George C. Kagadisa)

Department of Medical Physics, School of Medicine, University of Patras, Rion, GR 265 04, Greece

(Received 12 March 2013; revised 3 October 2013; accepted for publication 4 October 2013;
published 28 October 2013)

Purpose: The GATE Monte Carlo simulation toolkit is used for the implementation of realistic PET
simulations incorporating tumor heterogeneous activity distributions. The reconstructed patient im-
ages include noise from the acquisition process, imaging system’s performance restrictions and have
limited spatial resolution. For those reasons, the measured intensity cannot be simply introduced in
GATE simulations, to reproduce clinical data. Investigation of the heterogeneity distribution within
tumors applying partial volume correction (PVC) algorithms was assessed. The purpose of the present
study was to create a simulated oncology database based on clinical data with realistic intratumor
uptake heterogeneity properties.
Methods: PET/CT data of seven oncology patients were used in order to create a realistic tumor
database investigating the heterogeneity activity distribution of the simulated tumors. The anthropo-
morphic models (NURBS based cardiac torso and Zubal phantoms) were adapted to the CT data of
each patient, and the activity distribution was extracted from the respective PET data. The patient-
specific models were simulated with the Monte Carlo Geant4 application for tomography emission
(GATE) in three different levels for each case: (a) using homogeneous activity within the tumor,
(b) using heterogeneous activity distribution in every voxel within the tumor as it was extracted from
the PET image, and (c) using heterogeneous activity distribution corresponding to the clinical image
following PVC. The three different types of simulated data in each case were reconstructed with two
iterations and filtered with a 3D Gaussian postfilter, in order to simulate the intratumor heterogeneous
uptake. Heterogeneity in all generated images was quantified using textural feature derived parame-
ters in 3D according to the ground truth of the simulation, and compared to clinical measurements.
Finally, profiles were plotted in central slices of the tumors, across lines with heterogeneous activity
distribution for visual assessment.
Results: The accuracy of the simulated database was assessed against the original clinical images.
The PVC simulated images matched the clinical ones best. Local, regional, and global features ex-
tracted from the PVC simulated images were closest to the clinical measurements, with the exception
of the size zone variability and the mean intensity values, where heterogeneous tumors showed bet-
ter reproducibility. The profiles on PVC simulated tumors after postfiltering seemed to represent the
more realistic heterogeneous regions with respect to the clinical reference.
Conclusions: In this study, the authors investigated the input activity map heterogeneity in the
GATE simulations of tumors with heterogeneous activity distribution. The most realistic hetero-
geneous tumors were obtained by inserting PVC activity distributions from the clinical image
into the activity map of the simulation. Partial volume effect (PVE) can play a crucial role in the
quantification of heterogeneity within tumors and have an important impact on applications such as
patient follow-up during treatment and assessment of tumor response to therapy. The development
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of such a database incorporating patient anatomical and functional variability can be used to evaluate
new image processing or analysis algorithms, while providing control of the ground truth, which is
not available when dealing with clinical datasets. The database includes all images used and gener-
ated in this study, as well as the sinograms and the attenuation phantoms for further investigation.
It is freely available to the interested reader of the journal at http://www.med.upatras.gr/oncobase/.
© 2013 American Association of Physicists in Medicine. [http://dx.doi.org/10.1118/1.4826162]
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phantoms

1. INTRODUCTION

Positron emission tomography (PET) is considered the state
of the art for oncology diagnosis and treatment planning
and 18F-FDG is the most widely used radiotracer in such
applications.1 Optimization of quantification of PET im-
ages in clinical practice is also a field of intense interest
and research to fully exploit functional information of this
technique.

Over the past years the introduction of computer science in
the field of medical physics has been rapidly evolving. Monte
Carlo (MC) simulations are increasingly being used in nuclear
medicine as a tool that could soon be translated in the clinical
practice. The Geant4 applications for tomography emission
(GATE) MC toolkit provides high accuracy in physics mod-
eling and is optimized for nuclear imaging applications, with
large flexibility in using voxelized phantoms and complex ge-
ometries, allowing movement incorporation.2, 3 Compared to
other MC packages, GATE offers additional precision con-
sidering physics modeling, which is handled by the Geant4
code4, 5 and it has been extensively validated both on simple
and more realistic geometries, which are highly demanding in
computational resources. MC simulations of PET acquisitions
are still the most reliable approaches to validate and assess the
performance of image processing/analysis or reconstruction
algorithms, such as (i) partial volume correction (PVC), (ii)
de-noising, (iii) segmentation, (iv) reconstruction, and (v) au-
tomated detection. MC simulations provide the ground truth
of the input data, since they allow total control of interactions
taking place. Thus, they can either provide artifact free data,
to validate correction algorithms or allow the execution of bi-
ased experiments to understand and quantify the effect of a
process on acquired data.

Simulated emission tomography images have been widely
used for the evaluation and the validation of processing meth-
ods and acquisition protocols used in clinical practice.6–9

Previous studies have presented simulated PET databases
for such purposes. Reihlac et al.10 proposed a cerebral PET
database based on the PET-SORTEO MC code. With the
same MC tool a database of FDG PET images for lymphoma
was proposed by Tomei et al.11 A large database containing
several cases of emission tomography simulated brain and
whole body data was proposed by Castiglioni et al.12 in 2005.
Recently, an open access database containing simulated PET-
MR datasets based on real MR acquisitions was made avail-
able by King’s College London.13 Although GATE is highly
accepted in the nuclear imaging community, at the moment

there is no GATE based PET database available, which could
be used as a reference dataset regarding the simulation of real-
istic tumors with complex shapes and heterogeneous activity
distributions. Two recent studies investigated the simulation
of realistic PET images. The first introduced the use of vari-
ability in the phantoms in order to generate various anatomies,
and the use of complex shapes and different levels of activity
in the tumors in order to generate realistic tumors.14 How-
ever, this study only investigated the use of a limited num-
ber of activity levels in a tumor to generate heterogeneity. A
more recent study by Stute et al.15 demonstrated the feasibil-
ity of highly realistic simulations of PET images including
tumors and accounting for the heterogeneous uptake through-
out the body. Another recent study investigated the impact of
the input data on the simulated images and it suggested us-
ing input data with very high spatial resolution in order to
best reproduce the clinical images with the MC techniques.16

In the study of Stute et al., 18F-FDG PET and 131I SPECT
scans were acquired testing the propagation of the noise and
spatial resolution in the input activity distribution for real-
istic simulated data. Real patients’ scans were used in the
simulations while the results showed that the noise proper-
ties of the reconstructed simulated images were almost in-
dependent of the noise input activity distribution. However,
using high-noise and high-resolution patient data as input
yielded reconstructed images that could not be distinguished
from clinical images. Subtle differences between the recon-
structed volumes suggest that a very high level of noise might
impact some small structures with heterogeneous activity
distribution.

The main goal of the present study was to create a
PET database with realistic tumor simulations, incorporat-
ing both patient variability within anthropomorphic compu-
tational models and highly realistic and validated intratumor
tracer uptake heterogeneity incorporating patient’s anatomical
and functional characteristics. The impact of several parame-
ters playing a role in clinical routine PET imaging was also
investigated.

2. MATERIALS AND METHODS

This study incorporates the patient’s variability using an-
thropomorphic computational models. The Philips Allegro
and the Siemens Biograph-6 PET scanners, already mod-
eled in the GATE MC platform, were used in the presented
database.17, 18 The NCAT and Zubal phantoms were used
for simulating different patients. PET/CT clinical data were
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used for the extraction of the activity distribution and the
attenuation map. The simulated data were reconstructed us-
ing the STIR software.19 A database of seven different
clinical studies was created and quantitative analysis was
performed between the simulated and clinical images to eval-
uate simulation realism. The simulation procedure was di-
vided in two main parts. The first one is the modeling of
the scanner and the second one incorporates the description
of the voxelized phantoms (including attenuation and activity
maps). The whole procedure is explained in Secs. 2.A–2.D.

2.A. GATE Monte Carlo toolkit

This study was based on the GATE v6.0 release using the
Geant4.9.4 code.2, 4 All the appropriate physical processes
needed for realistic simulations were modeled using the
“standard model.”

2.B. Clinical data

The simulated database is based on clinical PET/CT real
data acquired on a Philips PET/CT Allegro/GEMINI sys-
tem (Philips Medical Systems, Cleveland, OH, USA). Pa-
tients fasted for at least 6 h before injection. The dose of
administered 18FDG was 5 MBq/kg with a postinjection av-
erage of 60 min. CT data were acquired first (120 kV and
100 mAs, no contrast-enhancement). 3D PET data were ac-
quired with 2 min per bed position, and images were re-
constructed using CT based attenuation correction and a 3D
row-action maximum likelihood algorithm (RAMLA) using
a previously optimized protocol (two iterations, 4 × 4 × 4
mm3 voxels grid sampling, 5 mm 3D Gaussian postfilter-
ing, relaxation parameter of 0.05).20 The seven oncological
cases included different types of tumors. Specifically, three
lung tumors (patients 1–3), one lymphoma in the ORL region
(patient 4), and three head-brain tumors (patients 5–7) were
modeled.

In the present study, we used the same scanner model for
executing the simulations in order to have more comparable
results to the clinical data. However, in the database a second
dataset of the seven oncology patients is also included using
the Biograph-6 PET system.

2.C. Data preparation

2.C.1. Attenuation phantom

The anatomy of the patients in our study was mod-
eled using the nonuniform rational basis splines (NURBS)-
based cardiac-torso (NCAT) and the CT-based head Zubal
phantoms.21–24 The NCAT phantom provides very good flex-
ibility for the creation of realistic organ models due to the
NURBS surfaces. The NCAT phantom was adapted to the first
three patient’s anatomy (patients 1, 2, and 3) with information
from the corresponding CT data using an interactive software
application.25, 26 2D slices of the NCAT phantom were over-
laid with corresponding slices of the CT images. The organ
shapes were modified by changing the position of the control
points associated to the NURBS surfaces of each organ. Rota-
tions, translations, and scaling were applied to one or several
organs, in order to achieve a global adaptation of the phantom
to the anatomy of a given patient. For the last four cases, the
Zubal head phantom was used, in order to simulate the tumors
within them. In those four cases, the Zubal phantom was not
modified; instead only the tumor location was different across
the different simulations.

For the attenuation map, the attenuation coefficients at
511 keV photon energy of NIST (Ref. 27) were used for the
different organs participating in each simulation. The vari-
ous organs in each phantom were simulated with the materi-
als provided by the GATE Materials Database (Materials.db)
(Ref. 3), namely, air, lung, body, ribbone, spinebone, intes-
tine, breast, spleen, blood, heart, liver, kidney, water, softtis-
sue, adipose, brain, skull, and muscle. The tumors in the sim-
ulations were considered as soft tissue media.

The phantoms imported in GATE had a voxel scaling of 4
× 4 × 4 mm3, equal to the crystal size of the modeled scanner.
Details for all the phantoms and the simulation acquisitions
are given in Table I of the Appendix.

2.C.2. Activity map

The activity distributions were inserted in the GATE soft-
ware by defining the activity value of each individual voxel
(in Bq). The exact SUV values of each voxel were calculated
based on the clinical PET data.14 The 18F-FDG distribution
was extracted from the individual patient clinical data. Re-
gions of interest (ROIs) were defined in the various organs

TABLE I. Information for the clinical data and the phantoms imported in GATE.

Clinical Computational Phantom Tumor Tumor Total inserted
data matrix model voxel size voxels activity (MBq) activity (MBq)

Patient 1 144 × 144 × 192 NCAT 4 × 4 × 4 631 0.68 34.50
Patient 2 144 × 144 × 234 NCAT 4 × 4 × 4 1640 0.72 57.41
Patient 3 144 × 144 × 212 NCAT 4 × 4 × 4 3185 11.15 82.87
Patient 4 144 × 144 × 211 Zubal 4 × 4 × 4 1025 0.67 25.61
Patient 5 128 × 128 × 93 Zubal 4 × 4 × 4 3068 4.21 29.03
Patient 6 128 × 128 × 47 Zubal 4 × 4 × 4 842 0.88 25.85
Patient 7 128 × 128 × 47 Zubal 4 × 4 × 4 893 1.03 25.97
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FIG. 1. Representation of the activity distribution within the central slice of the patient 5 tumor: (a) clinical, (b) homogeneous, (c) heterogeneous, and (d) PVC
activity distribution. Cases (b)–(d) are the different inputs in the simulation for one patient. The normalized profiles in these four cases are presented in (e) where
the values are normalized to the maximum value of this slice.

(liver, lung, kidneys, etc.) to calculate the activity concentra-
tions per organ. Then, the activity concentrations were com-
pared to the theoretical standard uptake values (SUVs) that
already exist in the literature.28

2.C.3. Tumor modeling

In order to investigate the tumor activity distribution, the
clinical tumors were inserted in the computational phantoms.
Our purpose was to investigate the realism of the simulated
heterogeneity activity distribution in the reconstructed images
with respect to the actual distribution inserted in the simulated
phantom. The anthropomorphic phantoms were prepared as
discussed in Secs. 2.C.1 and 2.C.2 without modeling any ab-
normality of the patient. The exact tumor shape on each indi-
vidual patient was then extracted from the clinical image and
imported in the corresponding phantom.

Initially the tumors were automatically delineated us-
ing the fuzzy locally adaptive Bayesian algorithm from the
clinical PET images.29 Resulting segmentation masks were
checked visually to ensure the entire functional PET uptake
distribution was well included. A mask of the tumor was cre-
ated for each patient defining the shape of the tumor based
on the delineation result, representing the ground truth for
our simulations. The assessment and comparison of the het-
erogeneity distribution visual appearance and quantification
within the tumor was carried out by defining three different
activity maps for the ground truth. The most simple consisted
in extracting the mean activity value within the delineated tu-
mor on the clinical PET images, and assigning it to a homo-
geneous activity distribution. These simulations will be de-
noted as “homogeneous” from here onwards. A second series
of simulations were performed by using heterogeneous ac-
tivity maps inside the tumors. The activity in each voxel of
the simulated ground truth was defined with exactly the same
value as in the corresponding clinical image (voxel-by-voxel
heterogeneity distribution). These simulations will be denoted
as “heterogeneous” from here onwards. Finally, activity maps
corresponding to the clinical distribution after PVC within the

tumors were also used. These will be denoted as “PVC” sim-
ulations from here onwards.

2.C.3.a. Partial volume effects correction. Partial vol-
ume effects (PVE) are a consequence of the limited spatial
resolution of PET scanners [about 5-6 mm full width at half
maximum (FWHM)]. This effect is major especially in tu-
mor imaging, which concerns structures of one to several
cm in diameter. In addition, tumor subvolumes and hetero-
geneities may be smaller.30 Several techniques have been re-
ported in the literature for PVC compensation in emission
tomography.6, 31–34 In our study, we used an iterative decon-
volution improved by a wavelet-based denoising previously
validated for PET imaging.35

Figure 1 illustrates the three different simulated inputs for
one of the simulated tumors along with the clinical original
image. A line profile comparison between them is also de-
picted. These profiles provide an indication of the differences
in the activity maps that were imported into GATE.

2.C.4. Simulation procedure

2.C.4.a. Scanner description. The simulations were car-
ried out using a model of the Philips Allegro PET scan-
ner which had already been fully validated for the GATE
platform.17 The whole scanner consists of 28 flat blocks, of
22 by 29 Gadolinium Oxyorthosilicate (GSO) crystals (638
crystals per block). The surface area and the thickness of the
individual crystals are 4 × 6 × 20 mm3. The scanner has
an axial field of view (FOV) of 18.0 cm and a radial FOV
(patient’s port) of 56.0 cm. Moreover, an energy window be-
tween 350 and 650 keV was applied via the Thresholder and
the Upholder modules, while the energy blurring (blurring
resolution) was set to 15% of 511 keV. Finally, the coinci-
dence time window of the scanner was set to 7.5 ns via the
coincidence sorter.

2.C.4.b. Acquisition process. One bed position was sim-
ulated for each case studied, including the tumor in the speci-
fied FOV. Two minutes acquisition time was set according to
the clinical protocol procedure.

Medical Physics, Vol. 40, No. 11, November 2013
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TABLE II. Number of coincidences (trues, scattered, and random) for the
seven simulated patients.

Number of trues Scattered Randoms

Patient 1 16 623 574 30% 38%
Patient 2 28 792 096 25% 49%
Patient 3 36 523 359 35% 35%
Patient 4 8 129 216 33% 37%
Patient 5 8 799 169 29% 24%
Patient 6 6 018 485 32% 26%
Patient 7 9 710 226 42% 25%

GATE v6.0 was used. GATE offers additional precision
considering the physics modeling, although it is more compu-
tationally demanding than other simulation platforms such as
SimSET (Ref. 7) and SORTEO (Ref. 36) that have been pre-
viously used for realistic simulations.14 The simulations were
executed in the GateLab grid, which uses parallel computers
on the European Grid Infrastructure (EGI).37, 38 Five hundred
processors were used per simulation, with every simulation
lasting for about 15 h. Running the simulations in parallel
CPUs gave us the opportunity of implementing the acquisi-
tions without any limitations in physical cuts or in using vari-
ance reduction techniques (VRTs), achieving good statistics
required as in the case of clinical protocols.

The simulated images were reconstructed using only the
true coincidences, to obtain data with ideal random and scat-
ter correction. Random and scattered coincidences were ex-
cluded from the reconstruction procedure, in order to isolate
the information of the “ideal” heterogeneous distribution and
to investigate the tumor heterogeneity based on the ground
truth of the phantom and the applied MC method. In Table II

the number of the true, scattered and random coincidences are
presented for all the patients (homogeneous case).

2.C.4.c. Simulated data processing—OncoBase. The
STIR (software for tomography image reconstruction)
open-source software (version 2.2) was used for the recon-
struction of the simulated data with the OSMAPOSL iterative
algorithm (with SPAN 3), which is the implementation of the
ordered subset expectation maximization (OSEM) version
of Green’s MAP one step late algorithm.39 The Allegro
system by Philips was also simulated in the STIR program
for the reconstruction of the simulated sinograms. Data were
reconstructed using two iterations. All reconstructed images
resulting from the STIR software were 128 × 128 × 57
pixels, with pixel spacing 4 × 4 × 3.15 mm3. The 29 crystals
of the scanner (4 × 4 mm2 crystal size) resulted in 57 slices
in the reconstructed images with the pixel half scaling. Linear
interpolation was therefore applied to the data, in order to be
directly comparable to the clinical ones (the voxel scaling
in the clinical data was 4 × 4 × 4 mm3). All reconstructed
images were postsmoothed using a 3D Gaussian filter with a
5 mm FWHM in order to be more comparable with the clin-
ical data that was similarly filtered. Moreover, the database
includes data from the Siemens Biograph-6 PET scanner.
This system was also modeled in the STIR software resulting
in images with 149 × 149 × 78 pixels (4 × 4 × 2 mm3). In
order to extend the database, the dataset of the Biograph-6
includes reconstructed images of the seven patients with one
and two iterations, with and without post filtering, for further
investigation in processing algorithms. In Figs. 2 and 3 of
the Appendix, two patients of the database are presented. In
Fig. 2 a central image plane (including the tumor) of patient
1 is shown. For the validation of the process, the simulated
plane [Fig. 2(a)] and its line profile is presented in kBq/ml.

FIG. 2. (a) Simulated central axial plane of patient 1 including the tumor, (b) line profile of patient 1 in kBq/ml, and (c) mean activities (kBq/ml) in several
organs compared to published data (*in the current study the tumor over lung contrast has been calculated in both clinical and simulated data).
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FIG. 3. (a) Clinical case: sum of axial planes of patient 5, (b) simulated case:
sum of axial planes of patient 5 (PVC), and (c) line profiles across the head
including the tumor area.

The mean activities of the simulated organs of patient 1 were
calculated with their associated standard deviation (SD) and
are presented in Fig. 2(c). In order to validate the realism
of our simulations the results of the mean activity in several
organs were compared in Fig. 2(c) to previously published
data.11, 14 Quantitative results of the organs showed the very
good agreement of our simulations with other realistic sim-
ulations. Furthermore, the simulated tumor-to-lung contrast
was compared to the clinical one, showing a difference of
2.55%. In Fig. 3, patient 5 is presented with additional line
profiles across the tumor and brain for comparison purposes
between the clinical and the simulated images. Through this
comparison, the tumor-to-brain contrast was investigated
across the two images. Comparing point-by-point the two
line profiles, differences ranged between 0% to 36%, with an
average difference of 15.01% ± 10.91%.

The entire database consists of seven different oncologi-
cal cases and two different scanners. It includes the original
clinical PET data for every patient, the mask of the tumor in
every case (which represents the ground truth of the tumor),
the sinograms in a format suitable for the STIR software, and
finally, the simulated data of every case. The simulated data
include the three activity maps that were previously described
(homogeneous, heterogeneous, and PVC), for every patient.
The exact position of every tumor within the phantoms is also
provided for every patient.

In order to investigate the simulated intratumor hetero-
geneity, quantitative analysis is performed in the simulated
data of the Allegro system, with two iterations in the recon-

struction algorithm and 5 mm 3D Gaussian postfiltering. All
the other cases including the raw data, the sinograms, and the
reconstructions are available in the developed database, which
is freely available to the interested reader of the journal at
http://www.med.upatras.gr/oncobase/.

2.D. Image analysis/comparison

Each tumor in the reconstructed images from the raw sim-
ulated data was compared to the clinical tumor using several
figures of merit in order to identify the most realistic result.
In order to compare the simulated intratumor heterogeneity,
all the data were normalized according to formula (1) in the
same grayscale values (0–64).

(In − min (I )) ×
(

max TN − min TN

max (I ) − min (I )
+ min (I )

)
, (1)

where In is every value of the matrix of the image (I), minTN is
the minimum value of the new grayscale range (0), maxTN

is the maximum value of the new grayscale range (64), min(I)
is the minimum value of the image, and max(I) is the maxi-
mum value of the image.

First, profiles were drawn across the tumors for visual and
qualitative assessment. Second, quantitative measures were
automatically extracted and compared across all simulated
images with respect to the clinical one. We considered a mix-
ture of global standard tumor quantification parameters (mean
activity, standard deviation, and kurtosis) as well as some tex-
tural features parameters recently proposed to quantify lo-
cal (entropy, homogeneity, and dissimilarity), and regional
(intensity variability and size zone variability) uptake hetero-
geneity. The reconstructed (two iterations), postfiltered simu-
lated data were compared to the clinical ones.

2.D.1. Heterogeneity textural features

Textural analysis was performed in our simulated data for
the heterogeneity characterization in 18F-FDG images. In two
recent studies,40, 41 the robustness (with respect to acquisi-
tion and reconstruction protocols) and physiological repro-
ducibility (assessed on double baseline PET scans) of sev-
eral textural features for tracer uptake heterogeneity quan-
tification was assessed. Among all the parameters that can
be obtained from textural features analysis, the most robust
and reproducible were entropy, homogeneity, and dissimilar-
ity (for local characterization) as well as the size and the inten-
sity variability (for regional characterization). These features
were therefore chosen to quantify heterogeneity in the present
study.

2.D.1.a. Local features. All characteristics were ex-
tracted by normalizing the images in 64 levels grayscale. Nor-
malization is required in the same grayscale range in order to
have comparable feature values. Entropy, homogeneity, and
dissimilarity were extracted for all the images (clinical and
simulated) as they are the most stable in reproduction.17 In or-
der to extract these features, co-occurrence matrices were cal-
culated according to the study of Tixier et al.42. Local entropy
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and homogeneity are defined according to Eqs. (2) and (3),
respectively:

Entropy = −
∑
i,j

M1 (i, j ) log (M (i, j )) , (2)

Homogeneity =
∑
i,j

M1 (i, j )

1 + |i − j | , (3)

where M1 is a co-occurrence matrix, i,j refer to the specific
cell coordinates on the matrix and M1(i,j) is an element of the
matrix.

2.D.1.b. Regional features. According to Tixier et al.,40

the most stable regional features are intensity and size
zone variability. The area under the curve (AUC) index is
also tested in the present study, which describes the area
under a cumulative SUV-volume histograms curve (CSH).
It is a quantitative index of tumor uptake heterogeneity,
with lower AUC values corresponding to higher degrees of
heterogeneity.43

2.D.1.c. Global features. The reproducibility of the
global features was previously analyzed,40 in accordance to
which the SUV mean value and the kurtosis are the most sta-
ble parameters. In the present study, the kurtosis and the mean
intensity value were extracted for each patient. All simulated
data were also compared voxel by voxel to the clinical tumor
and the calculated mean difference is presented. All the im-
ages were also normalized in the same grayscale range (0–64)
in the area of the tumor, in order to extract comparable global
features.

3. RESULTS

3.A. Heterogeneity tumor distribution

In this section, the effect of the activity distribution within
the tumor is investigated for the variable simulation param-
eters. Line profiles were selected in representative central
slices of the tumor, in which different areas of heterogene-
ity appear. In Fig. 4, all simulated cases with and without

FIG. 4. Patient 5: representation of a central slice of the different tumors simulated cases with and without 3D Gaussian postfiltering. The lines across which
the profiles were plotted are represented for comparison reasons with the clinical image.

Medical Physics, Vol. 40, No. 11, November 2013
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FIG. 5. (a) Comparison of the profiles between the postfiltered simulated data and the clinical tumor for patient 1, and (b) comparison of the profiles between
the postfiltered simulated data and the clinical tumor for patient 2.

postfiltering are represented for patient 5. Profiles in the un-
filtered images showed large variations, so we included only
the profiles of the filtered data with two iterations, which
are comparable to the clinical. The simulated homogeneous
cases are not included in the profile comparisons as they do
not exhibit intratumor heterogeneity. In addition, the clini-
cal PET image is given with its corresponding tumor mask.
Figures 5(a) and 5(b) show two examples of such profiles
(heterogeneous, PVC, and clinical cases) in two different pa-
tients. In Figs. 5(a) and 5(b), the tumor profiles of patient 1
and patient 2 are shown in comparison with the clinical PET
image, respectively.

In Fig. 5(a), the intensity of the first peak on the clinical tu-
mor is observed at the distance of 9 mm. In the PVC images,
the peak is observed at 13 mm, while in the heterogeneous tu-
mors there is a peak observed at 20 mm. In the region between
30–40 mm, another peak is observed for both the clinical and
the PVC cases in contrast to the heterogeneous simulation.

The profiles of the tumor for a second indicative patient
(patient 2) are shown in Fig. 5(b). Two different regions are
noticed in this case. In the first region, a peak is observed at
15–25 mm and in the second at 55 mm. Additional regions are
observed in the PVC data with intensity similar to the clini-
cal image. The second peak shows an intensity 3.5% higher
compared to the clinical one, while in the case of the hetero-
geneous tumor the second peak shows a higher intensity of
20.7%. PVC case seems to best fit the clinical profile.

For the remaining patients the profiles of the filtered sim-
ulated data are given in the Appendix [Figs. 6(a)–6(e)]. As it
is shown, PVC case of patients 3–7 also seems to best fit the
clinical profile.

3.B. Heterogeneity textural features

3.B.1. Local features

In Fig. 7 (in the Appendix), the percentage of the mean
differences of the local textural features within the tumors are
represented. We have extracted the heterogeneity parameters
for all seven patients and the mean differences were calculated
in order to extract a general conclusion. The most robust local
features are presented namely entropy, homogeneity, and dis-
similarity. It can be observed that the PVC simulated tumors
provides the lowest differences compared to the clinical im-

ages. More specifically PVC cases show a mean difference of
2.24% for entropy, 9.54% for homogeneity, and 14.29% for
dissimilarity.

In Table III the percentage differences of all the patients of
the reconstructed (two iterations) filtered data (heterogeneous
and PVC) are presented against the clinical data. The highest
and the lower differences are marked for every feature taking
into account all patients. The highest differences for entropy,
homogeneity and dissimilarity are observed in the heteroge-
neous cases. On the contrary, the lowest values are observed
in the PVC cases. In all patients, it is clearly observed that the
percentage differences for all local features in the PVC im-
ages are quite low. Only for patient 3 the dissimilarity for the
PVC case shows a difference higher than 20.0%. However,
even this value is lower than the hetero simulations. There are
some cases (patient 5 and 6 for homogeneity and dissimilar-
ity) that PVC gave worse results, although those results are
lower than 20.0%.

A general trend is observed, where local features in the
simulations seem to have smaller variations compared to the
features extracted in the clinical PET cases when the input in
the activity distribution is corrected for the PVE.

3.B.2. Regional features

In Fig. 8 (see the Appendix), the mean differences of the
most stable regional features between simulated and clinical
data are presented. In general, we have noticed that regional
features and the AUC index have a trend similar to the lo-
cal features. The PVC simulated tumors exhibit better results
than the heterogeneous ones, when compared to the clini-
cal regional features. This means that lower mean differences
are found between PVC and clinical images compared to the
other simulated cases in intensity variability and in the AUC
index. For the size zone variability, the heterogenous tumors
showed better results in the mean differences. More specifi-
cally 4.52% difference was observed between heterogeneous
and clinical data, while PVC and clinical tumor had a mean
difference of 5.21% which is very close to the heterogenous
value. Similar to the local characteristics, in Table IV, the per-
centage mean differences, of the simulated reconstructed tu-
mors compared to the clinical ones, are presented.
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FIG. 6. Comparison of the profiles between the postfiltered simulated data and the clinical tumor (a) for patient 3, (b) for patient 4, (c) for patient 5, (d) for
patient 6, and (e) for patient 7.

FIG. 7. Histogram of the local features of the mean% differences of all the
simulated patients in comparison with the clinical data.

Both the intensity and the size zone variability are quite
stable features for all the simulated cases with mean dif-
ferences smaller than 8.05%. The highest differences are
observed for all the features in the heterogeneous tumors,
as it was also shown for the local features. Finally, large
discrepancies are observed in the AUC index (which has not
been tested before for its reproducibility) where PVC data are
much better than the other simulated cases, with differences
lower than 13% for all seven patients.

3.B.3. Global features

In Table V, the kurtosis, the standard deviation (SD),
and the mean intensity values within the tumor of all the
patients are presented. The mean difference of each feature
is also included. In Fig. 9 (see the Appendix), in accordance
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TABLE III. Percentage (%) differences of the local features for the simulated data of all seven patients compared
to the clinical PET data. The (%) mean difference of all the cases is also presented.

Entropy Homogeneity Dissimilarity
% difference % difference % difference

Patient Hetero PVC Hetero PVC Hetero PVC

1 0.13 0.35 5.30 3.73 6.14 5.95b

2 10.19a 5.95 24.04a 17.20 24.07 15.96
3 4.68 4.16 17.57 13.37 26.04 23.49
4 0.90 0.88 17.87 12.50 28.85a 18.50
5 1.93 2.41 5.85 9.99 7.54 12.29
6 0.34 1.87 4.24 9.23 9.65 17.17
7 0.27 0.04b 2.03 0.75b 7.80 6.67
Mean 2.63 2.24 10.99 9.54 15.73 14.29

aThe highest value of the specific feature.
bThe lowest value of the specific feature.

FIG. 8. Histogram of the regional features of the mean% differences of all
the simulated patients in comparison with the clinical data.

to the local and the regional features, the percentage mean
differences of the global features are presented in histogram.

In general, according to the mean differences, kurtosis and
standard deviation gives also better results for the PVC tu-
mors. On the contrary, the mean intensity values are better
represented by the heterogeneous simulations with 6.97% dif-
ference compared to the clinical tumors. For all the global
features, we also observe that the highest differences are ob-
served in the heterogenous cases, as in local and in regional
characteristics. Moreover, it is very interesting that compar-
ing the intensity values of each voxel (voxel-by-voxel com-
parison) the smallest differences are observed in PVC data.

As shown from the presented differences in Table V, the
global features are also better in the PVC simulated cases,
closer to the clinical one, except for the mean intensity, which
is better reproduced by the heterogenous tumors. Kurtosis for
the PVC data shows differences lower than 20% for all the
patients with a mean value lower than 10%.

TABLE IV. Percentage (%) differences of the regional features for the simulated data of all seven patients
compared to the clinical PET data. The (%) mean difference of all the cases is also presented.

Intensity variability Size zone variability AUC
% difference % difference % difference

Patient Hetero PVC Hetero PVC Hetero PVC

1 6.79 2.96 1.27 3.37 3.25 5.50
2 8.49 11.22 20.12a 18.81 11.86 4.29
3 2.66 9.42 5.29 2.84 23.74 12.74
4 15.81a 6.33 0.09b 0.55 19.21a 10.42
5 10.32 0.83 3.49 5.81 2.60 14.31
6 11.55 7.34 0.22 0.96 13.24 3.03
7 0.75b 5.19 1.16 4.10 13.33 1.67b

Mean 8.05 6.18 4.52 5.21 12.46 7.42

aThe highest value of the specific feature.
bThe lowest value of the specific feature.
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TABLE V. Global features for the simulated data of all seven patients compared to the clinical PET data. The mean values of all the cases are also presented.

Mean intensity Std Kurtosis Mean difference
% difference difference % difference voxel-by-voxel comparison

Patient Hetero PVC Hetero PVC Hetero PVC Hetero PVC

1 6.02 14.83 16.79 13.24 7.31 0.45b 23.73 21.4
2 9.37 19.25 35.52a 26.58 8.97 15.42 36.68a 35.18
3 22.52a 1.82 20.02 9.08 50.59b 19.26 23.73 15.56
4 1.19 12.73 15.15 12.11 18.18 7.74 22.73 20.36
5 1.04 17.95 14.34 9.65 17.49 4.56 18.29 19.73
6 7.99 25.02 16.33 5.46b 13.50 15.03 13.45b 20.95
7 0.63b 15.04 15.60 11.85 4.61 6.06 34.83 33.01
Mean 6.97 15.23 19.11 12.57 17.24 9.79 24.78 23.74

aThe highest value of the specific feature.
bThe lowest value of the specific feature.

4. DISCUSSION

Freely available datasets are of major importance in med-
ical physics research, since they can provide reference data,
methods, and tools to compare results of different teams, as
well as overcome resource limitations. However, in the field
of nuclear medicine (PET and SPECT), the existence of sim-
ulated datasets, including the corresponding clinical images,
is very limited in number, realism, and variability. Although
MC simulations have played a crucial role in the investigation
of several algorithms for image processing and the evalua-
tion of acquisition protocols on clinical systems, no reference
dataset exists, which could be exploited by several groups that
are working in the field.

In the present study, a database of oncological simulated
data was created, based on the GATE toolkit that provides
high precision in the physical modeling (using Geant4 code)
compared to other MC codes. To overcome computational
limitations, we used the GateLab grid for our simulations,
resulting in statistics similar to those of clinical protocols.
We did not use any speed up methods like VRTs, cuts in
physics or accelerated tracking algorithms for the particle

FIG. 9. Histogram of the global features of the mean% differences of all the
simulated patients in comparison with the clinical data.

transportation, although their application and effect on re-
sults accuracy can be a subject for future research. In addi-
tion, only one bed position was simulated and the effect from
scattered photons originating from neighboring beds was not
assessed.

The developed database, including the sinograms of the
simulated data, is freely available to interested researchers for
further parameter testing. Thus, several alternative approaches
could be tested in reconstruction image correction and image
processing at the different simulations of the same patient, for
evaluation purposes. Moreover, it can be used to “predict” the
clinical output when using an alternative clinical scanner or
a different acquisition protocol. Simulated data resulted from
simulations using a model of the Philips PET Allegro system.
Moreover, datasets of the same patients using the Biograph-6
PET system was included in the database as the simulation
scanner has already been accurately simulated by some of the
coauthors. The added value and main new result of this work
is that, in order to accurately simulate tumor heterogeneity,
it is necessary to include a PVC step before introducing PET
images as an activity input to GATE simulations. This step
constitutes an alternative strategy to what has already been
suggested before.16

The presented database is based on flexible computational
anthropomorphic models (NCAT and Zubal). The patient’s
variability was taken into account in two different levels.
Firstly, the anatomy of the NCAT phantom was adapted to
the clinical CT data, and then the 18F-FDG distribution was
extracted based on the corresponding PET images. This pro-
cedure is an easily reproducible one if adequate data are avail-
able, thus allowing producing a larger dataset. Realistic tu-
mors in shape and in FDG uptake variability were modeled
inside the phantoms. The correction of the PVE, which is re-
sponsible for the limited resolution in the borders of heteroge-
neous areas, was tested in the present study, by simulating the
realistic tumors with contrast enhancement in the inserted dis-
tribution. Previously reported studies had also shown that in-
sertion of the activity map with higher spatial resolution than
usual could increase the quality of the simulated data in or-
der to be comparable to the clinical ones.16 Using original
clinical images, without any preprocessing, as an input to a
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GATE simulation is a common mistake and will lead to more
blurred simulated images, since the factors that limit image
quality will be practically duplicated in the simulation. PVC
activity maps proved to improve the resulting images when
compared to clinical data. This led to better results compared
to simulations where the heterogeneity activity distribution
was directly extracted from PET images. The presented anal-
ysis included reconstructed data of two iterations in the re-
construction algorithm. Further investigation comparing the
number of the iterations in the reconstruction could be done
in whole body simulations. Synthesis and analysis of these
two methods in different organs in whole body simulations
could increase the overall accuracy of emission tomography
simulations.

Our future plans are to support and extend the developed
database with SPECT and PET whole body simulated data.
In all cases the original corresponding patient, as well as sim-
ulated data will be provided. The standardization of the pro-
cedure for heterogeneity distribution, which plays a crucial
role, will be combined with motion modeling in the phantom,
since they are present in clinical data and they definitely af-
fect the obtained clinical images. In this way, it will be pos-
sible to provide more qualitative and quantitative acceptable
images and assess and/or develop new tools for the evalua-
tion of postprocessing motion correction algorithms, toward
improved heterogeneity resolution.

5. CONCLUSION

Our purpose was to standardize a method for accu-
rate/realistic MC simulations within the tumors incorporating
patient’s characteristics and anthropomorphic computational
phantoms. The process and the effect of modeling realistic
PET (18F-FDG) tumor simulations, incorporating tumor vari-
ability, voxel based heterogeneity and partial volume correc-
tion has been analyzed. Seven patients were modeled using
the NCAT and the Zubal phantoms, creating seven different
datasets of oncology PET situations. Extraction of textural
characterization in the activity heterogeneity as well as pro-
files within the tumors resulted in highly realistic images.
PVC simulated data (reconstructed with the STIR software)
were comparable to the corresponding clinical images with
the less differences.

In conclusion, the oncology database “OncoBase” has
been developed from raw data and includes the simulated out-
puts of clinical data, the respective sinograms (in STIR for-
mat) and the corresponding clinical PET data. This database is
freely available at http://www.med.upatras.gr/oncobase/ and
will be continuously updated with more datasets from SPECT
and PET clinical and preclinical scans.
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